Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 156: 213711, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061158

RESUMO

Hollow vaterite microspheres are important materials for biomedical applications such as drug delivery and regenerative medicine owing to their biocompatibility, high specific surface area, and ability to encapsulate a large number of bioactive molecules and compounds. We demonstrated that hollow vaterite microspheres are produced by an Escherichia coli strain engineered with a urease gene cluster from the ureolytic bacteria Sporosarcina pasteurii in the presence of bovine serum albumin. We characterized the 3D nanoscale morphology of five biogenic hollow vaterite microspheres using 3D high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) tomography. Using automated high-throughput HAADF-STEM imaging across several sample tilt orientations, we show that the microspheres evolved from a smaller more ellipsoidal shape to a larger more spherical shape while the internal hollow core increased in size and remained relatively spherical, indicating that the microspheres produced by this engineered strain likely do not contain the bacteria. The statistical 3D morphology information demonstrates the potential for using biogenic calcium carbonate mineralization to produce hollow vaterite microspheres with controlled morphologies. STATEMENT OF SIGNIFICANCE: The nanoscale 3D structures of biomaterials determine their physical, chemical, and biological properties, however significant efforts are required to obtain a statistical understanding of the internal 3D morphology of materials without damaging the structures. In this study, we developed a non-destructive, automated technique that allows us to understand the nanoscale 3D morphology of many unique hollow vaterite microspheres beyond the spectroscopy methods that lack local information and microscopy methods that cannot interrogate the full 3D structure. The method allowed us to quantitatively correlate the external diameters and aspect ratios of vaterite microspheres with their hollow internal structures at the nanoscale. This work demonstrates the opportunity to use automated transmission electron microscopy to characterize nanoscale 3D morphologies of many biomaterials and validate the chemical and biological functionality of these materials.


Assuntos
Carbonato de Cálcio , Escherichia coli , Carbonato de Cálcio/química , Microscopia Eletrônica de Varredura , Microesferas , Escherichia coli/genética , Microscopia Eletrônica de Transmissão e Varredura , Materiais Biocompatíveis
2.
Nanotechnology ; 35(1)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37703845

RESUMO

Scanning transmission electron microscopy is a common tool used to study the atomic structure of materials. It is an inherently multimodal tool allowing for the simultaneous acquisition of multiple information channels. Despite its versatility, however, experimental workflows currently rely heavily on experienced human operators and can only acquire data from small regions of a sample at a time. Here, we demonstrate a flexible pipeline-based system for high-throughput acquisition of atomic-resolution structural data using an all-piezo sample stage applied to large-scale imaging of nanoparticles and multimodal data acquisition. The system is available as part of the user program of the Molecular Foundry at Lawrence Berkeley National Laboratory.

4.
Microsc Microanal ; 29(Supplement_1): 1881-1882, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613846
5.
Nat Commun ; 13(1): 5957, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216798

RESUMO

Nanomaterials with core-shell architectures are prominent examples of strain-engineered materials. The lattice mismatch between the core and shell materials can cause strong interface strain, which affects the surface structures. Therefore, surface functional properties such as catalytic activities can be designed by fine-tuning the misfit strain at the interface. To precisely control the core-shell effect, it is essential to understand how the surface and interface strains are related at the atomic scale. Here, we elucidate the surface-interface strain relations by determining the full 3D atomic structure of Pd@Pt core-shell nanoparticles at the single-atom level via atomic electron tomography. Full 3D displacement fields and strain profiles of core-shell nanoparticles were obtained, which revealed a direct correlation between the surface and interface strain. The strain distributions show a strong shape-dependent anisotropy, whose nature was further corroborated by molecular statics simulations. From the observed surface strains, the surface oxygen reduction reaction activities were predicted. These findings give a deep understanding of structure-property relationships in strain-engineerable core-shell systems, which can lead to direct control over the resulting catalytic properties.

7.
Innov Clin Neurosci ; 14(5-6): 11-20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979822

RESUMO

Pain, pruritus, and nausea are complex sensory and emotional physiological symptoms that can vary widely between people and even within an individual, depending on the context and meaning of the symptom and the psychological state of the person. This article reviews the acute neural transmission of pain, pruritus, and nausea symptoms, which can begin in the periphery and/or viscera. The subsequent multiple pathways in the central nervous system that become involved in the processing of these symptoms are also discussed. The authors describe human brain imaging studies that have revealed consistent cortical and subcortical networks activated by these symptoms, including sensory, limbic, and associative regions. In particular, the authors discuss information revealed by the studies regarding the primary somatosensory cortex, secondary somatosensory cortex, anterior cingulate cortex, insula, prefrontal cortex and thalamus, are the brain areas most commonly activated by noxious stimuli. Finally, the authors describe treatment options for chronic presentations of these symptoms, which are, in part, based on central nervous processing of these sensations.

8.
Ultramicroscopy ; 176: 146-150, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28342572

RESUMO

Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au144(SCH2CH2Ph)60 provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123-151 atoms, only 3% of clusters matched the theoretically predicted Au144(SR)60 structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters.

9.
Innov Clin Neurosci ; 14(9-10): 4-10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29344425

RESUMO

Adrenal insufficiency is divided into three types based on the etiology of its development. In primary adrenal insufficiency, pathology resides in end-organ failure at the level of the adrenal cortex, while in secondary and tertiary adrenal insufficiency, impairment rests in the pituitary gland and hypothalamus, respectively. Regardless of etiology, adrenal insufficiency results in a hypocortisolemic condition. While the relationship between neuropsychiatric symptoms, especially psychosis, and hypercortisolemia has been extensively documented, the development of hypocortisolemia-induced psychosis is less common. We present a case of secondary adrenal insufficiency caused by a pituitary tumor. During the course of evaluation and treatment, the patient developed a psychotic episode. We will briefly review the condition of adrenal insufficiency and propose how hypocortisolemia can result in psychosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...